
Advanced Graphics on Sun™

An Introduction to Texture Mapping

Technical White Paper

Please
Recycle

 1997 Sun Microsystems, Inc.—Printed in the United States of America.
901 San Antonio Road, Palo Alto, California 94303 U.S.A

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-
19.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Solaris, Ultra, VIS, XGL, and OpenWindows are trademarks or registered trademarks of
Sun Microsystems, Inc.in the United States and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

THIS PUBLICATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN NEW
EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR CHANGES IN
THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIIME.

i

Contents

1. Introduction .1

Texture Mapping and Visual Realism . 2

Applications for Texture Mapping . 2

Texture Mapping on Sun . 6

2. Texture Mapping Background .7

Basic Texture Mapping Techniques . 7

Advanced Texture Mapping Techniques . 11

Texture Mapping in Practice . 13

3. Texture Mapping Architectures .25

Overview . 25

Creator3D System Architecture . 30

VIS™ Instruction Set . 35

4. Software Interfaces for Texture Mapping39

Texture Mapping with OpenGL . 39

Texture Mapping with the XGL™ Graphics Library 41

ii Creator Graphics Technology — July 1997

Texture Mapping with PEXlib . 43

3-D Graphics API Texture Mapping Comparison 44

5. Summary .47

A. References .49

B. Glossary .51

1

Introduction 1

Over the last several decades, the field of computer graphics has grown from
specialized applications in niche markets such as mechanical design and
mapping, to broad usage in areas ranging from electronic design and
animation to graphics arts and multimedia.

Advances in graphics technology have enabled this explosion in applications.
Sophisticated ASICs, for instance, have provided low-cost 2-D and 3-D
graphics accelerators. Likewise, powerful software technology has led to the
proliferation of high quality rendering tools, development tools, graphical user
interfaces, and the emergence of standards in application programing
interfaces (APIs).

As computers and media continue to converge, there is increasing demand for
visual realism in a wide variety of applications. Texture mapping has emerged
as an important tool for providing synthetic realism in applications from
traditional design and simulation packages, to today’s interactive “virtual
reality” games.

This document serves as an introduction to texture mapping, its applications,
techniques, and approaches. Texture mapping technology is described in
Chapter 2. Chapter 3 discusses graphics architectures and their impact on
texture mapping with particular focus on the Creator3D graphics architecture.
Software interfaces which provide texture mapping support are covered in
Chapter 4.

2 Advanced Graphics on Sun : An Introduction to Texture Mapping — July 1997

1

Texture Mapping and Visual Realism
Providing a sensation of realism is increasingly important to advanced
graphics applications, whether they are used in military simulation or for
consumer entertainment. The complexity of real-world scenes is necessarily
great, and finding an effective means to meet the goals of realism while
sustaining high image quality and/or real-time display rates is problematic.

Texture mapping (or pattern mapping) provides an extremely powerful
technique for rendering visual detail, without the requirement for explicit
modeling of the geometry of the textured object. Texture mapping lends a
realistic appearance to a computer generated scene, particularly where the
number or complexity of the rendered objects is significant.

The rendering of repetitive objects such as trees, windows, or bricks can be
easily and quickly achieved with texture mapping. Drawing a large flat brick
wall without texture mapping would require rendering geometric structure for
each brick in the wall. By using texture mapping, one geometric object is
drawn (the wall) and a 2-D image of a brick wall is “stuck” to the rectangle
which represents the wall.

Applications for Texture Mapping
From scientific and engineering applications to highly artistic computer-
assisted animation projects, texture mapping is finding utility in a wide range
of applications.

Advanced Computer-Aided Design

Today’s corporations have large investments in 3-D mechanical design data
(CAD/CAM/CAE, and architectural), which must be used effectively
throughout the organization.

It is common to subject these 3-D designs to finite element modeling,
constructive solids geometry for interference checking, stress analysis, and a
variety of other compute-intensive 3-D analysis techniques. Using 3-D texture
mapping, volumetric analysis data can be mapped to 3-D design data enabling
engineers to evaluate designs by their internal properties.

Introduction 3

1

Simulation and design styling applications require sophisticated lighting,
transparency, and antialiasing capabilities. The ability to map 2-D textures to
surfaces enables design engineers to provide realistic representations of models
which reduces the need to produce full-scale physical mock ups.

Geographic Information Systems (GIS)

GIS applications vary broadly in the problems they help solve and the
techniques they use. For example, some GIS applications provide only simple 2-
D mapping capabilities appropriate for land use analysis, utility management,
emergency services, and other uses. Recent availability of digital terrain data and
low-cost global positioning equipment has driven the use of 3-D data for
common GIS display and analysis.

Representing geographically-oriented data using wireframe or solids modeling
can provide an added dimension to data interpretation. The ability to visually
represent terrain height enables users to more quickly understand the
significance of their data as it relates to surrounding terrain (e.g., flood plains).
Of increasing interest to these users is the ability to map textures in the form of
satellite imagery to the 3-D surface data to more effectively simulate vegetation,
geologic formations, and waterways.

Earth Sciences

Earth sciences applications, such as those used in the oil and gas industry,
typically manipulate large volumes of both 2-D and 3-D seismic analysis and
well-log data. Scientists interpreting this data strive to understand its
significance in the context of local geological strata to determine the likelihood of
the presence of mineral deposits, and the effort required to retrieve them.

In the case of 3-D seismic data, techniques which permit the visualization of
underground strata often rely upon the generation of data ‘slices’ which provide
the user with more powerful visualization capability. 3-D slices can be computed
in a number of ways, with corresponding data complexity requirements and
computational demands. Of growing interest to geoscientists is the ability to
apply 3-D texture mapping techniques to the data slice in an accelerated fashion,
allowing more flexible and rapid viewing.

4 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

1

Medical Imaging

Medical imaging applications have experienced substantial growth in recent
years, both in terms of usage and sophistication. While medical imaging
applications traditionally have been oriented toward the manipulation and
display of 2-D data such as X-ray, computer-assisted tomography, and related
areas, the use of 3-D data is growing rapidly.

The use of computer graphics in medical imaging has recently expanded to
include 3-D vector graphics and solids modeling for diverse applications ranging
from microsurgery and non-surgical exploration using micro-optics to facial
reconstruction (both forensic and rehabilitative), and CT scans (volumetric
rendering). The latter two examples in particular are prime candidates for the
use of texture mapping.

CT scan information, much like seismic data, utilizes a large number of data
slices. The flexibility to view and change the data’s internal structure rapidly is
very important, and the pragmatic application of advanced texture mapping
techniques can make this possible. Applications like facial reconstruction and
plastic surgery already employ 3-D graphics capabilities, and with texture
mapping these programs can achieve better quality, and more realistic
representation.

Graphic Arts

Graphic arts applications perform the creation and manipulation of line art and
images as used in a variety of areas including publishing, illustration, and
advertising. Graphic arts applications focus on the production of photorealistic
and synthetic images based upon computer generated geometry or bit-mapped
textures. To create such effects, graphic arts applications increasingly are using
advanced graphics functionality such as lighting and shading, transparency,
image processing, and ray tracing. Manipulation of the data via computer
modeling (versus real-world photography) can also give the artist greater
freedom in introducing artificial objects into the scene, the effect of which can be
very visually compelling.

Texture mapping techniques allow these users to increase the sophistication and
quality of their final images by the application of textures to 3-D geometry in
combination with other advanced graphics capabilities. For example, users can
place wood grain on tables and patterns on shower curtains to create realism, or
produce synthetic background textures yielding artistic effects.

Introduction 5

1

Simulation, Animation, and Virtual Reality

Simulation and animation applications vary in their rendering requirements
based upon the type of data (2-D, 3-D, lighted and shaded, antialiased, etc.) to be
rendered and whether the geometry is structured for playback only or for
interactive editing.

Movies such as Jurassic Park and Toy Story are testimonies to computer-aided
animation. Commercial and military flight simulators, arcade-style computer
games, and even virtual reality applications benefit from very high display rates
of dynamically changing scenes.

Texture mapping allows computer-generated 3-D figures to appear more
realistic. For example, a table can appear to be made of marble, wood, or glass.
When realism is achieved, objects like a table, posses a sense of mass. Combat
simulations and virtual reality environments which allow people to experience
(and even control) their real-world equivalents are typically heavily dependent
on the use of texturing techniques.

Visualization

Visualization technology represents the application of computer graphics
technology to the visualization of medical or scientific data, traditionally
represented in static media such as plots, charts, x-ray or hard-copy images. The
application of visualization software algorithms, combined with graphics
workstations, permits the data to become ‘dynamic’, allowing the engineer or
scientist to manipulate and visualize the data in real-time.

Visualization applications vary in their requirements and are dependent upon
whether they manage 2-D or 3-D data and image depth (8, 12 or 24-bit). Some
visualization applications encompass image processing of static data, while
others generate and manipulate 3-D models or simulations.

Visualizing the results of a thermodynamic simulation as a 3-D texture mapped
solid gives engineers and scientists insight into internal structure or events.

6 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

1

Texture Mapping on Sun
Because texture mapping combines image processing techniques with the
manipulation of three dimensional geometric objects, it requires a graphics
architecture that excels at both disciplines.

Unfortunately, the image manipulation capabilities as well as the I/O
architectures of many current graphics accelerators are limited by their
emphasis on the computation of geometric data. The location of many such
3-D accelerators on slow peripheral buses creates greater overhead in
communicating with the CPU and memory, causing imaging and texture
mapping applications to suffer.

 Creator3D Graphics Systems

Sun’s Creator3D graphics architecture provides an innovative approach which
accelerates both 3-D graphics and imaging applications without compromising
performance or application flexibility. Sun™ Ultra™ workstations equipped
with Creator3D graphics systems support 2-D and 3-D texture mapping
applications written in a wide range of graphics APIs without adding arbitrary
limitations to applications or extra cost to the base computing platform.

7

Texture Mapping Background 2

As previously mentioned, applications of texture mapping technology ranges
from highly interactive applications where texture mapped objects are
manipulated in real-time to applications where image quality is of primary
importance.

Different texture mapping techniques require a range of calculations to be
performed: as a result, selecting texture mapping methods often involves a
trade off between interactivity and final image quality. Techniques used to
provide convincing images of skin moving over a dinosaur’s frame are likely
inappropriate for a high-speed interactive computer game.

This section presents an overview of texture mapping terminology and
techniques. While this document primarily focuses on interactive texture
mapping applications, sections that follow will also highlight more advanced,
computationally demanding techniques which are generally used for
animation.

Basic Texture Mapping Techniques
Textures can be thought of as simple rectangular arrays of data (2-D textures)
or volumes containing multiple rectangular arrays of data (3-D textures). The
individual values in a 2-D texture are known as texels (texture elements) and
are analogous to pixels on a computer screen. In a 3-D texture, these individual
elements may be referred to as voxels to indicate their placement within a
volume of image data.

8 Advanced Graphics on Sun : An Introduction to Texture Mapping — July 1997

2

The data contained in, or referenced by a texel (or voxel) can be color data,
intensity or luminance data, or may combine color and alpha data (RGBA).

Texture mapping algorithms map rectangular texture data to non-rectangular
regions. In addition to mapping a single texture, texture mapping algorithms
must also be able to map multiple textures to a single object, and maintain the
correct appearance no matter how the object is transformed (rotated, scaled,
and projected). Lighting and perspective calculations must also be performed.

Given the wide range of operations that may be performed on texture mapped
objects, filtering operations are required to produce the correct final pixel color.
Discrete texels from the initial texture may end up being mapped to more than
one pixel for final display to the screen. Alternately, one screen pixel may cover
several texels, depending on the orientation and scaling of the texture mapped
object.

2-D Texture Mapping

2-D texture mapping works by combining either synthetic or photographic
images with traditional vertex-based geometric objects.

The easiest way to understand 2-D texture mapping is by imagining the
process of placing a flexible decal on a two- or three-dimensional object.
Another approach is to imagine “draping” a patterned cloth over a three
dimensional object. In both cases, the pattern or texture assumes the shape of
the underlying geometry.

Figure 2-1 illustrates a basic use of 2-D texture mapping. In this case, the floor
below the wagon has been textured to represent a wood appearance. A second
texture was used to apply the “Sun Flyer” decal to the wagon in the image.
Other advanced graphics methods were employed to produce lighting,
shading, and highlights.

Texture Mapping Background 9

2

Figure 2-1 Texture mapping provides considerable flexibility in defining the
appearance of objects and their scenes

3-D Texture Mapping

In contrast to 2-D texture mapping which maps a 2-D texture or image onto the
surface of geometric data, 3-D texture mapping extends a 3-D texture through a
three dimensional geometric object. Like 2-D textures, 3-D textures can be
either captured (medical or seismic data) or programmatically generated (such
as a computer-generated marble pattern).

3-D texture mapping approximates volume rendering but at a lower
computational cost. As a result, 3-D texture mapping applications are able to
provide interactive performance on a wider range of hardware platforms.

2-D texture mapping is used principally to enhance 3-D data. In contrast, the
texture in 3-D texture mapping generally is the data of interest. 3-D texture
mapped objects can be cross-sectioned or sliced to reveal otherwise unseen
internal details.

10 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

Figure 2-2 illustrates an arbitrary slicing plane taken through three
dimensional data from a CT Scan. Data is extracted from the 3-D texture and a
2-D texture is then mapped to the intersecting plane. This approach differs
from traditional volume rendering where actual voxel values are probed with
rays projected from the user’s viewpoint and tiny triangles representing the
voxels are then lit and shaded.

Figure 2-2 An image produced by slicing through a 3-D texture-mapped object

Medical imaging has traditionally been a key application for volume rendering
because it allows the multiple 2-D images from a CT scanner or Magnetic
Resonance Imaging system to be built into a three dimensional computer solid
that can be sliced and probed to search for internal anomalies.

Seismic and petroleum applications also present 3-D volumetric data which
can be sliced to probe for voids.

3-D texture mapping also solves some problems encountered at seams and
joints with traditional 2-D texture mapping techniques. Because 3-D texture
maps represent a consistent internal structure, rather than a 2-D image which is
“stretched” over the surface of an object, they may provide a more realistic
rendering for some kinds of materials.

Texture Mapping Background 11

2

For example, a piece of lumber rendered with 2-D texture mapping would
show an external surface that resembled wood (grain, knots, etc.) but the
internal portion of the rendered geometry would remain hollow. By using 3-D
texture mapping, the same rendered geometry would allow slicing to reveal
internal wood grain and other details.

Advanced Texture Mapping Techniques
A number of texture mapping techniques differ significantly enough from basic
2-D and 3-D texture mapping to warrant specific mention. Many of the
techniques that follow are typically used to represent very high quality
photorealistic images and are therefore not appropriate for interactive “real-
time” texture mapping applications where a high level of interactivity is
essential.

Procedural Mapping

2-D and 3-D texture mapping techniques differ from their more complex
counterpart, procedural mapping, in that they make few assumptions about the
object, and rely instead on a pre-existing (or pre-computed) texture to provide
information regarding the appearance of the rendered object.

Procedural models describe objects that can interact with external events to
modify themselves and can save space since they procedurally specify the
objects to be drawn rather than storing lists of vertices. A procedural model of
a sphere might take as a parameter the number of polygons to be used to
render the sphere, and might allow a choice of functions to represent surface
texture.

The burden of the representation of the rendered object lies with the logic of
the procedure code. In simple terms, the procedure is customized to produce a
specific appearance, usually placing emphasis on realism versus speed in
rendering.

Procedural mapping does offer many benefits, including great flexibility in
grasping the essence of objects without the constraint of following the laws of
physics in representing the object’s geometry (rendering a furry donut, for
example). Further, procedural mapping allows the object to have varying
degrees of quality in terms of physical appearance, based upon the user’s
control. Procedural modeling’s drawbacks are specifically in the area of real-
time rendering.

12 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

If procedural texture mapping is employed, procedural definitions of the color
variations to be applied to the objects in a scene are used. This approach avoids
the necessity of transformation calculations associated with mapping two-
dimensional texture patterns onto object surfaces. However, the computation
of these textures can require substantial compute resources which generally
makes procedural texture mapping inappropriate for real-time texturing.

Procedural texture modeling and mapping is generally reserved for animation
or high-quality photorealistic rendering where the computation can be
performed in a batch manner and where the quality of the resulting image(s) is
paramount.

Bump Mapping

Bump mapping is another technique which can be used to create interesting
surface detail for realistic images employed in animation.

While texture mapping can be used to produce very fine surface detail, it
suffers in attempting to model surface roughness. Thus, texture mapping is not
useful for representing the appearance of fur, grass, or the details on the
surface of an orange. Surface roughness is limited in that the details of
illumination do not adequately correspond to the actual direct illumination in a
scene.

Bump mapping applies a perturbation function to the surface normals of the
object, and then uses those perturbed normals in the calculation of illumination
of the object.

Displacement Mapping

A slight variation of bump mapping known as displacement mapping uses the
textures themselves to move the surface, in addition to changing the surface’s
normals. The result of displacement mapping is the same as traditional bump
mapping, with the addition of displacement appearance on the silhouette of
the object.

Texture Mapping Background 13

2

Figure 2-3 A displacement mapped sphere

Reflection Mapping

Reflection mapping (or environment mapping) can be used to provide highly
realistic images of reflective objects placed in a three dimensional scene.
Reflection mapping is supported by APIs like OpenGL and is applicable to
interactive graphics rendering.

With reflection mapping, the ultimate goal is to simulate reflections from
mirror-like or otherwise highly reflective surfaces. In that sense, reflection
mapping may be thought of as a simplified ray tracing method. Essentially, a
reflection mapping procedure computes the direction of reflection of a light ray
from the viewer to the point being shaded. The texture is then scaled and
translated to map onto the object based upon the viewer’s point, the surface
receiving the reflection, and the object being reflected.

Texture Mapping in Practice
Texture space is measured by the coordinates u, v, and w. The coordinate u
represents horizontal direction, v represents vertical, and w represents depth
(in the case of 3-D textures). This discussion will consider 2-D textures for
simplicity.

14 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

As illustrated in Figure 2-4, the origin (u=0, v=0) of a texture is always located
at the lower left corner. Both u, and v, range between 0 and 1, regardless of the
size and shape of the texture.

Figure 2-4 A texture in texture space

Texture coordinates differ from geometry coordinates in what is being
measured. Geometry coordinates (x, y, and z), are a reference system for
placing objects in a three dimensional world. Unlike a texture, a geometric
object exists at a given set of coordinates in three-space. If a geometric object is
transformed (moved, scaled, rotated, etc.), it exists at a different set of
coordinates in three-space.

Repeating and Clamping Textures

Texture coordinates only measure texture repetitions. The upper right corner of
the texture remains at (1,1), no matter how the texture is stretched or scaled.
The space between (0,0), and (1,1) represents one repetition of the texture. If
more than one repetition of the texture is used, the texture is said to be tiled
(repeated) or clamped.

Repeating Textures (Tiling)

When textures are repeated, each tile adds 1 to the u and/or v coordinates such
that a set of texture coordinates from 0,0, to 2,2 would be a grid of four tiles of
the texture as shown in Figure 2-5.

1,0

0,1

1,1

0,0
u

v

Texture Mapping Background 15

2

Figure 2-5 A tiled texture

Clamping Textures

The alternative to tiled textures is to specify texture clamping. With clamped
textures, any texture values greater than 1 are “clamped” to 1 and any values
less than 0 are clamped to 0. This technique is useful for applications that wish
to provide a single copy of the texture on a large surface. Figure 2-6 illustrates
the sample texture drawn as a clamped texture.

u

v

0,0 1,0 2,0

0,2 2,22,1

0,1

16 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

Figure 2-6 A clamped texture

Tiling and clamping can also be combined. For example, a texture could be
clamped in the u direction, and tiled in the v direction.

Surface Space

Texture space is flat (or cubic in the case of 3-D textures). However, the surfaces
that textures are placed on are often not flat at all. Thus, another set of
coordinates is required to describe surface space.

Surface space is defined with the coordinates of s and t, with s representing the
horizontal component, and t representing the vertical. s and t coordinates are
equivalent to u and v coordinates but represent a different concept. Since the
surface to be mapped may be very irregular, s and t coordinates provide a way
of mapping a particular point on the texture (u,v coordinates) regardless of any
stretching or distortion that may have taken place in order to place the 2-D

u

v

0,0 1,0 2,0

0,2 2,22,1

0,1

Texture Mapping Background 17

2

texture onto the 3-D surface. In other words, the u,v coordinates of the 2-D
image are referenced by the s, t coordinates on the surface that relate to the
x, y, and z coordinates of the 3-D geometry.

Figure 2-7 Different coordinate spaces required for texture mapping

Figure 2-7 illustrates the three different coordinate spaces used to map a 2-D
texture onto a 3-D surface.

 Mapping Textures to Surfaces

The simplest definition of texture mapping is the mapping of a defined texture
to a specified surface. The geometric representation of the object and its
perspective relative to the user’s viewpoint complicate texture mapping
because the texture must be transformed in order to cover the surface. This
process is referred to as parameterization.

A 2-D texture is tied to its corresponding 3-D model by way of tie points which
represent the mapping between texture coordinates, and coordinates on the
object’s surface. Mathematical projections are then employed to establish the
correspondence between the two. The tie points can be provided by the
program author (explicit), or some APIs provide facilities to automatically
generate texture coordinates. For example, OpenGL provides for explicit,
linear, and spherical projection of 2-D textures onto geometric objects.

u,v s,t x,y,z Mapped Object

18 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

The first step in automatic coordinate generation is to perform a projection of
the object surface onto a projection object, such as a plane, cylinder, or sphere.
The projection object is then unfolded onto a flat 2-D plane. The resulting 2-D
surface corresponds to the texture map for the object. Figure 2-8 illustrates the
projection of a geometrical object onto a projection surface.

Figure 2-8 Texture mapping first requires that the object’s geometry be projected onto
a surface

Generally speaking, the plane and spherical projection methods are supported
by interactive graphics APIs (OpenGL, XGL, PEXlib, etc.). Spherical projection
is often used for reflection or environment mapping.

Linear (planar)

Cylindrical

Spherical

Projection

Projection

Projection

Tie
Points

Texture Mapping Background 19

2

The projection process requires that the surface normals be used in finding the
intersection of the object to the projection surface. The projection surfaces
described above use either object centroid, normal, or linear projection
methods, as illustrated in Figure 2-9.

Figure 2-9 Alternative projection methods for texture mapping

Figure 2-10 illustrates a checkerboard pattern projected onto a spherical object
using a variety of projection techniques. In general, the projection technique
that most resembles the shape of the object will result in the most predictable
result. Not all projection techniques are represented in all APIs.

Figure 2-10 Several projections of a checkerboard pattern onto a spherical object

Texture Rendering Techniques

Additional techniques are needed to provide high visual-quality textures
mapped to an endless variety of geometric objects. For example, a 128x128
texel image would be expected to appear correctly on a polygon that takes up
a 128x128 pixel space on the workstation screen. However, if the projected

Projection Surface

Vertex

Object

Projection Surface

Normal

Object

Projection Surface

Vertex

Linear
Centroid Normal Projection

Spherical Projection Box Projection Cylindrical Projection

20 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

polygon takes up twice the space of the texture, a method must be found to
scale the image. Simply replicating pixels in the texture image results in a poor,
blocky image.

Single Level Texture Filtering

To avoid low-quality texture-mapped images, texturing algorithms interpolate
values from texels to arrive at the correct pixel color displayed on the screen. A
variety of texture filtering techniques are used.

• Single Sample

With a single sample approach, one sample, or value is taken from the
texture map and used to set the screen pixel color. Single sample is the
simplest filtering method and may produce artifacts in the resulting image.

• Bilinear Interpolation

Bilinear Interpolation takes four samples to correctly approximate each
displayed pixel. Bilinear interpolation provides a more visually correct
image than single sampling, but less than trilinear interpolation.

• Trilinear Interpolation

Trilinear interpolation represents the most computationally intensive
filtering process but produces the most visually correct texture mapped
image. Trilinear interpolation takes eight samples from the texture map to
compute each screen pixel.

MIP Mapping

Though ideal for many situations, single level filtering techniques are not
appropriate for all applications. Single level filtering techniques provide
excellent results for pattern mapping onto polygons but require computing a
filtered value at each point, so that for each pixel in the finished image, a
filtering computation is performed. This approach results in a computationally
expensive process where a single pixel in the final image may correspond to
thousands of pixels in the source pattern (envision a textured, horizontal plane
vanishing to infinity at the horizon).

MIP mapping (standing for multum in parvo — many things in a small place)
addresses this problem by providing an approximation to an ideal filtering of
an image. In MIP mapping, a series of filters is applied to the original texture
image. Each successive filter results in an image half the size of the layer below

Texture Mapping Background 21

2

it. Each of these filtered images constitutes a layer of the MIP map pyramid as
shown in Figure 2-11. When a target pixel is covered by a collection of source
pixels, the MIP map pixels corresponding to this collection most closely are
used to give a filtered value.

Figure 2-11 Texel pyramid employed in approximating colors for the texture map

In the illustration above, each pixel in a level n is equal to the average of four
pixels on the level beneath. As a result, the resolution of each texture map is
half of the level below, up to the highest level. At the top-most level, a single
pixel represents the average color of the entire original base-level texture map.

The MIP mapping technique provides this advantage while only requiring a
third again the amount of space required to store the original texture.
Figure 2-12 illustrates a top-down view of the MIP map pyramid. The red,
green, and blue channels of the original image fill three quarters of the MIP
map. Each channel is then filtered by a factor of 4, and the R, G, and B
components of the resulting image fill up three quarters of the remaining
quarter. The process is continued until the MIP map is filled.

In general all of the techniques used for single sample filtering are available for
generating the MIP map pyramid (single sample, bilinear interpolation,
trilinear interpolation). Because the MIP map pyramid represents a hierarchy
of filters applied to a single source image, the visual quality of a particular
texture is strongly related to the characteristics of the filters used.

22 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

Figure 2-12 A top-down view of the MIP map pyramid

Texture Functions

Thus far textures have been described as being painted directly on the on the
surface of an object. In actuality, multiple textures can be applied to a single
surface and a variety of texture functions can be employed to determine how
textures and surface colors are combined and masked.

The results of the texture functions depend on the format of the data stored in
the texture map.

• Decal

The decal function can be used to apply an opaque label to an object. If the
texture data contains an alpha value, then the decal function can be used to
apply an alpha blended texture, like a partially transparent decal, to the
object.

• Replace

The replace function simply replaces the surface color of the object with the
colors represented in the texture.

• Modulate

For modulation, the surface color is modulated by the contents of the
texture map. Depending on the format of the texture data, the surface color
is multiplied by values in the texture map.

Modulation is particularly useful for use with lighting since the surface
color can be used to attenuate the texture color.

...

G

B

R

G R

B

Texture Mapping Background 23

2

• Blend

The blend function can be used to blend the colors in the texture map with
the existing colors on the surface. In some cases, an environment color can
be used for blending as well.

24 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

2

25

Texture Mapping Architectures 3

Today’s advanced graphics architectures must provide performance and high
visual quality, and at the same time must represent a platform that is
affordable and flexible enough to effectively support a wide range of
applications. Satisfying these goals requires careful consideration of both
hardware and software design issues.

Graphics hardware design places various stages of the 3-D graphics pipeline
into dedicated graphics accelerators. Software design uses the hardware
features available on a given platform and complements them by providing
complete functionality coverage for a given API.

This section discusses different systems architectures for accelerating 3-D
graphics applications and texture mapping in particular. Traditional
approaches are contrasted with Sun’s innovative Creator Graphics system
architecture. Chapter 4 discusses software APIs which accelerate texture
mapping.

Overview
Accelerating 3-D graphics primitives to provide interactive levels of
performance is a large computational task. Today this computational problem
is often addressed with hardware accelerators built from dedicated processors,
memory, and ASIC technology.

26 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

3

Graphics commands enter the front of the 3-D graphics pipeline, and correctly
transformed, shaded, and lit pixels are sent out the other end of the pipeline to
the screen. A typical 3-D graphics pipeline is illustrated in Figure 3-1.

Figure 3-1 A typical 3-D graphics pipeline

Implementing 3-D pipelines in hardware can provide increased 3-D application
performance. Unfortunately, 3-D hardware pipelines can present an all or
nothing proposition. If an application requires a feature which is not
implemented in hardware, the entire rendering process may need to be
relegated to a much slower software pipeline. Given the interactivity
requirements of today’s complex, 3-D graphics applications, a slow software
pipeline can render an application unusable.

Input Data
Transformation

Perspective Divide

Face Determination
Clip Test

Clip (if needed)
Lighting

Set Up
Edge Interpolate

Screen Space Conversion

Output Lookup
DAC

Span Interpolate

Z-Buffered Blend
Frame Buffer

3-
D

 G
ra

ph
ic

s
P

ip
el

in
e

Texture Mapping

Video Out

Graphics Commands

Texture Mapping Architectures 27

3

Traditional Approaches to Hardware Texture Mapping

Accelerating texture mapping in the context of a pipelined graphics
architecture requires additional resources above those typically needed for 3-D
graphics. Because texture mapping implies a potentially different color for each
rendered pixel, it must be performed within the 3-D pipeline as shown in
Figure 3-1. Additionally, good texture mapping performance depends on fast
access to potentially large images from the 3-D pipeline.

Unfortunately, pipelined 3-D graphics accelerators are often closed off from
resources like the system processor and memory. As a result, most vendors
with pipelined 3-D graphics accelerators have added dedicated texture storage
memory in order to accelerate texture mapping. While this approach can
produce the best performance for direct display and manipulation of simple
texture mapped data, it does present some serious drawbacks for professional
applications.

Limited Texture Capacity

Dedicated texture memory represents a finite resource and places distinct
limits on the size and/or numbers of textures that can be represented. If a
texture or textures won’t fit in the dedicated texture memory, the system must
resort to using a software pipeline for rendering 3-D graphics. Because texture
mapping is most interesting for complex 3-D applications, this generally
results in serious application performance degradation.

Texture Size/Memory Size 1MB 4MB 16MB 64MB

128x128 pixels 15 63 255 1023

128x128 pixels, MIP mapped 11 43 191 767

256x256 pixels 3 15 63 255

256x256 pixels, MIP mapped 2 11 43 191

512x512 pixels 0 3 15 63

512x512 pixels, MIP mapped 0 2 11 43

1024x1024 pixels 0 0 3 15

1024x1024 pixels, MIP mapped 0 0 2 11

Largest Single Texture size 256x256 512x512 1024x1024 2048x2048

Table 3-1 An example of memory sizes and supported texture capacities

28 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

3

The numbers in Table 3-1 indicate how many textures of a given size can be fit
into 1, 4, 16, and 64 MB of texture memory. Numbers are given for both simple
textures and MIP-mapped representations.

It is clear that for sufficiently large or numerous textures, applications will
eventually fail to fit in the available dedicated memory resources and will,
therefore, fall back to using a slower software process.

Limited Application Deployment

Applications like seismic analysis and medical imaging require large 3-D
textures. These applications are often precluded from running with adequate
performance on architectures with dedicated, but finite, texture storage.

Limited Texture Access

Dedicated texture storage memory is necessarily located on the graphics
accelerator, remote from the system processor and memory. Because of this
relative distance, invalidating and reloading the texture content can cause
significant delays. These delays can easily neutralize the performance gains
ordinarily obtained for smaller texture maps.

Increased System Cost

As shown in Table 3-1, a considerable amount of dedicated texture memory is
required in order to support textures of a useful size. This dedicated, special-
purpose memory increases the cost of the system and represents a wasted
resource when not in use.

Sun’s Creator Graphics System

In contrast, Sun’s Creator graphics systems present an alternative to dedicated
texture storage without resorting to the slow speeds incurred with an
unaccelerated software pipeline.

Sun’s Ultra Creator3D graphics systems feature a highly integrated approach
that connects powerful UltraSPARC™ processors with advanced Creator3D
accelerator modules over a high-speed packet-switched memory interconnect
known as the Ultra Port Architecture (UPA).

Texture Mapping Architectures 29

3

This innovative approach allows textures to be stored in general purpose
system memory where they are operated on by powerful multimedia
instructions in the UltraSPARC CPU. Known as the VIS™ Instruction Set, these
instructions provide key mathematical and multimedia instructions, many of
which are useful for texture mapping operations.

This approach has many advantages for providing texture mapping support:

• Low System Cost

Leveraging system memory for texture storage keeps system costs low since
system memory is a shared resource. When not in use for texture mapping
applications, memory remains available for other applications.

• Large Texture Storage

Extremely large textures can be accommodated in system memory since it
represents a virtual address space. Applications like 3-D texture mapping
which use very large textures can be easily supported.

• Accelerated Pixel Processing (Rasterization)

The VIS Instruction Set provides instructions which allow the UltraSPARC
processor to directly access and operate on image (pixel) data with a high
degree of parallelism. Other SPARC and VIS instructions provide facilities
for formatting and moving data at very high rates of speed across the UPA
memory interconnect to the frame buffer.

• High Precision for Texture Mapping Operations

Texture mapping is a part of a pipelined process. The results of one
operation serve as the input for another operation, with only the final image
being displayed to the screen. With Creator Graphics systems, these
intermediate pixel colors are stored as 16-bit or 32-bit fixed-data values in
fast system memory. This added precision and dynamic range is useful for
filtering and image computations on pixel values.

• Texture Caching and Swapping

By performing texture mapping in the CPU, and storing textures in main
memory, the system cache and Memory Management Unit (MMU) can be
used to considerable advantage.

Since many texture mapping functions, like interpolation, operate on
neighboring pixels, the system cache can provide fast access to image data.

30 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

3

The MMU can be utilized to access large images held in system memory
(which are often striped and can exceed the cache) allowing them to be
operated on directly by the CPU in the same address space as other
application data.

• Scalable Performance

Because texture mapping is performed in the UltraSPARC processor, it can
benefit from the scalability gained by adding faster UltraSPARC processors.

• Other Interesting Texture Mapping Applications

By locating textures in main memory, other interesting texture mapping
applications are available, such as performing image processing functions
on textures and using texture mapped video rather than static images.

This flexible architecture enables Sun to add dedicated texture storage in future
generations of the Creator Graphics family without loosing the advantages of
the existing architecture. The Creator3D system, its architecture, and specific
approach to texture mapping are contained in the sections that follow.

Creator3D System Architecture
The Creator3D architecture available in Sun’s Ultra workstation product line
represents a unified system designed to accelerate 2-D and 3-D graphics,
imaging, and video applications. Graphics was central to the design of the
Ultra systems from the beginning, enabling engineers to build on lessons
learned with other architectures, allowing them to locate graphics technology
where it would most benefit performance.

This approach resulted in a highly-integrated, modular architecture that tightly
couples the CPU, the system memory interconnect, and the frame buffer and
graphics accelerator technology. In Creator Graphics systems, graphics
processing is balanced across the entire system to take advantage of all
available resources. Table 3-2 lists the different parts of the system responsible
for accelerating different graphics operations.

Texture Mapping Architectures 31

3

The Creator Graphics module accelerates the window system and 2-D graphics
applications as well as providing color space conversion for video
decompression and playback. The UltraSPARC processor and the VIS
instruction set perform most imaging, texture mapping, and video
decompression tasks. The UltraSPARC processor and the Creator Graphics
subsystem together share the task of accelerating the 3-D graphics pipeline.

3-D Graphics Rendering Pipeline

On Creator3D systems, the 3-D graphics pipeline is handled by both the
UltraSPARC CPU and the Creator Graphics module. Figure 3-2 compares the
Creator3D graphics pipeline with that of earlier ZX graphics systems from Sun.

With accelerators like the ZX, it was common to use dedicated floating point
processors (e.g., ZXFloat) to compute the front-end portion of the 3-D graphics
pipeline. In Creator Graphics systems, the considerable floating point
performance of the UltraSPARC processor provides this functionality.

Functionality Responsible System Component

Window System and 2-D Graphics Creator Graphics Module

Imaging, Video, and Texture Mapping UltraSPARC (VIS Instruction Set)
Creator Graphics Module

3-D Graphics Pipeline UltraSPARC (Floating Point Unit),
Creator Graphics Module

Table 3-2 Components responsible for processing in the Creator Graphics system

32 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

3

Figure 3-2 Pipeline differences for SPARCstation 20ZX and Creator Graphics systems

As the figure illustrates, the front portion of the 3-D graphics rendering
pipeline contains such floating point intensive operations as transformations,
clip tests, face determination, lighting, perspective divide, and conversion to
screen space coordinates.

Only with recent advances in processor technology have general purpose
processors been available with the necessary floating point processing power
to implement a design like Creator Graphics. By using fast general purpose
processors like UltraSPARC, it has finally become possible to build inexpensive
systems that provide high-end 3-D performance.

Input Data
Transformation

Perspective Divide

Face Determination
Clip Test

Clip (if needed)
Lighting

Set Up
Edge Interpolate

Screen Space Conversion

Output Lookup
DAC

Span Interpolate
Z-Buffered Blend
Frame Buffer

Creator

ZXCross

UltraSPARC

RAMDAC

3D-RAM

FBC2 ASIC

CPU

DAC

ZXDraw

ZXFloat

ZXCommand

ZX

VRAM

3-
D

 G
ra

ph
ic

s
P

ip
el

in
e

Graphics Graphics

Texture Mapping Architectures 33

3

Figure 3-3 illustrates the high level Creator Graphics system architecture and
identifies which components perform various activities in the 3-D rendering
pipeline.

Figure 3-3 Creator Graphics high-level block diagram

Creator3D Graphics

3D-RAM

UPA Bus Interface
PROM

Rendering
Pipeline

RAMDAC

24-bit Buffer A

24-bit Buffer B

Z-buffer

I/O Bridge

3D-RAM
Interface

Memory

Memory

Creator3D Module
performs rasterization
of lines, points, and triangles

UltraSPARC handles display lists,
vertex processing,
primitive assembly,
texture coordinate generation,
lighting

3D-RAM and the 3D-RAM
interface perform per-fragment
operations, such as depth
buffering and blending

UPA Memory Interconnect

UltraSPARC

34 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

3

Rasterization and Pixel Processing Architecture
As shown in Figure 3-4, rasterization and pixel processing is performed on
the Creator3D graphics system in one of three ways depending on the
primitives being rendered

Figure 3-4 Creator3D features three separate rasterization paths

• Creator3D Hardware Rasterizer

The Creator3D Graphics subsystem handles lines, points, and triangles, and
does simple pixel processing such as blending and the depth-buffer test.
Rasterization is done by the Frame Buffer Controller 2 ASIC (FBC2), and
pixel processing is performed by 3D-RAM.

• The VIS Software Rasterizer

Texture rasterization is done by the UltraSPARC processor using optimized
code that employs the VIS instruction set.

• Generic Software Rasterizer

Most APIs also provide a software rasterizer which uses the UltraSPARC
processor to do rasterization in an a less optimized fashion.

High Level Application or API (i.e. Java 3D)

VIS software

(texturing)
rasterization

Device Independent Code
(OpenGL, XGL, PHIGS, etc.)

Batched Vertex

(lines and points)
Processing Vertex

Processing

Rasterization
(per pixel

Software

Hardware

Generic

rasterization
software

Creator3D

(hardware)
rasterization

Per-vertex
Processing

Frame Buffer

3-D API

operations)

Texture Mapping Architectures 35

3

Table 3-3 summarizes the available data paths through the Creator3D graphics
system.

For more information on the Creator Graphics architecture, refer to the Creator
Graphics Technical White Paper.

VIS™ Instruction Set
UltraSPARC was the first microprocessor to fully support advanced graphics
and multimedia data manipulation. By introducing a comprehensive set of
multimedia instructions, known as the VIS Instruction Set, UltraSPARC
provides extremely fast hardware support for 2-D and 3-D graphics, video and
audio processing, and image manipulation. VIS instructions are grouped into
the following areas:

• Pixel format and conversion (expand, pack, merge)

• Image Processing (partitioned add, subtract, multiply, array addressing)

• Real-time video compression (motion estimation)

• Data transfer and animation speed-up (64-bit block load/store)

The graphics unit in UltraSPARC relies on the integer registers for addressing
image data and the floating point registers for manipulating image data. This
division of duty between the integer and floating point registers enables
UltraSPARC to make use of all available internal registers, maximizing
throughput.

Pixel information in UltraSPARC can be represented as eight 8-bit, four 16-bit,
or two 32-bit integer values. These values can be used to represent the color
(RGB) and intensity information for a color image. For higher resolution

Vertex Processing Rasterization Performance

Batched Vertex Processor Creator3D Graphics
Rasterizer

Fastest Path

Per-vertex Processor Creator3D Graphics
Rasterizer

Fast Path

Per-vertex Processor VIS Rasterizer
(Texture Mapping)

Optimized for Texture
Mapping

Per-vertex Processor Generic Software Rasterizer
(if available with API)

Slow Path

Table 3-3 Data paths through the Creator3D graphics subsystem

36 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

3

images, like those used in medical or color imaging, UltraSPARC can use 16-bit
components. Support is provided for both band-interleaved images, with the
various color components stored together, and band-sequential images that
have all of the values for one color component stored together.

Intermediate results for advanced image manipulation are stored as 16- or 32-
bit, fixed-data values. These provide an intermediate format with enough
precision and dynamic range for filtering and image computations on pixel
values. UltraSPARC has several single-cycle instructions specifically tailored
for manipulating these 16- and 32-bit components.

UltraSPARC also includes a variety of instructions that are essential for
advanced image manipulation. For example, UltraSPARC supports a filtering
operation for scaling, rotating, and smoothing images. The filtering operation
processes four pixels at a time, giving UltraSPARC an order of magnitude
performance advantage over other processors.

VIS Texture Mapping Implementation Details

The application of pixel-level texture mapping potentially produces a different
color per pixel in the resulting image. As a result, the triangle scan
interpolation algorithm in the 3-D pipeline is replicated for texture mapping
utilizing VIS instructions.

For every pixel in a given triangle, the location is calculated, the color is looked
up from the texture according to the calculated u,v value, then interpolation,
texturing operations, and lighting are applied to determine the final pixel color.
Finally, the pixel position and color is sent down to the Creator3D frame buffer.

These steps make up the VIS-enabled software rasterizer mentioned
previously. A generic VIS-enabled rasterizer is illustrated in Figure 3-5. Note
that the VIS-enabled rasterizer differs depending on the 3-D graphics API that
it implements. Not all APIs provide the same functionality or the same order of
processing.

Texture Mapping Architectures 37

3

Figure 3-5 Pipeline describing a generic VIS-enabled software rasterizer

A number of VIS instructions are used to accelerate texture mapping
operations within the VIS-enabled software rasterizer.

• Accelerating Texture Interpolation Methods

VIS is very useful for computing the various sampling methods used in
texture mapping (e.g. bilinear interpolation, MIP mapped bilinear, MIP
mapped trilinear, and MIP map point linear interpolations).

For example, in a bilinear case, 4 sample colors need to be extracted from
the neighboring texels and weight-averaged together. Using common
“C-style” coding techniques, a red, green, blue, and alpha value would need
to be extracted from each of the four colors, then each would need to be
multiplied, added, and shifted four times.

Using VIS, the four operations (for red, green, blue, and alpha) are
performed simultaneously using VIS floating point add, multiplication, and
pack instructions. Again, intermediate results are stored as 16-bit values for
greater precision.

Vertex location (x, y, z, w) and (u, v) values
Triangle edge walking routine

Apply lighting component (XGL & PEX)

Texture lookup for every pixel

Span interpolation

Apply texture operation

Apply texture interpolation method

Send to frame buffer

V
IS

-e
na

bl
ed

 R
as

te
riz

er

Apply boundary condition (calculate new u,v)
Perspective correction

Apply texture color table (OpenGL — optional)

38 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

3

• Accelerating Texture Operations

VIS instructions can be effectively used to accelerate the calculation of
texturing operations (modulate, blend, decal, etc.).

For example, the modulate texture operation calculation requires that the
red, green, and blue values for the pixel be separated, each multiplied with
the object color (r, g, and b), and the result packed together.

By using VIS instructions, this operation is performed for the r, g, and b
values in parallel for each pixel using a single 8x16-bit floating point
multiply instruction and a single floating point pack instruction.

• Applying Lighting Components

Lighting calculations utilize parallel 8x16 bit floating point multiplication,
16-bit floating point add, and 16-bit pack instructions to operate on all of the
color components of a pixel in parallel. Intermediate results are stored as a
16-bit floating point value for added precision.

• Moving Pixels to the Frame Buffer

Because the VIS-enabled rasterizer is running in the UltraSPARC processor,
an in-line SPARC function (write-double) is used to write the Z value and the
color to the pixel address in the frame buffer.

39

Software Interfaces for Texture Mapping 4

All applications which perform texture mapping require a graphics application
programming interface to handle the complex operations and the close
interaction required with platform hardware. Developers may have a variety of
issues which drive their selection of a graphics interface, including
performance, functionality, cross-platform considerations, and underlying
hardware support.

The following sections briefly describe the use of key graphics software
interfaces for texture mapping on Sun. OpenGL, XGL™, and PEXlib, are briefly
discussed. For more information on these software interfaces, please reference
their respective product documentation and specifications.

Texture Mapping with OpenGL
The OpenGL graphics application programming interface is a vendor neutral
software interface which operates independently of operating and window
system platforms. Based upon its proprietary predecessor, GL, OpenGL
provides a broad set of 3-D graphics functions for modeling transformations,
color, lighting, shading, and advanced features such as texture mapping.

The OpenGL Architecture Review Board is responsible for defining OpenGL’s
characteristics and features, as well as conformance testing, release approval,
and specification definition. OpenGL is independent of any underlying
window system, and display of rendered graphics occurs through either
extensions to the graphics library or through direct window system calls.

40 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

4

Solaris native OpenGL functionality is available now from Sun as an
unbundled product. First introduced for Creator3D graphics on the Ultra 1 and
2 systems, Solaris OpenGL 1.1 now provides a highly accelerated
implementation of OpenGL for the entire range of Creator and Creator3D
systems and an optimized software implementation for many other graphics
accelerators.

Native OpenGL is fully integrated with Solaris, allowing developers to take
advantage of the Solaris operating environment's advanced features. Solaris
OpenGL can run with Common Desktop Environments (CDE) or
OpenWindows™ environments. A defined common extension to the X
Window System allows OpenGL client to run across distributed heterogeneous
networks.

The OpenGL architecture/pipeline is illustrated in Figure 2-5.

Figure 4-1 The OpenGL architecture and pipeline

Solaris™ OpenGL software represents a high performance implementation of
OpenGL on the Creator Graphics platform. Specific optimizations include:

• Accelerating OpenGL by using all of the features of the Creator3D graphics
subsystem

• Optimizing line and point transformation and clip test, and some subsets of
texture lookup and filtering

• Implementing OpenGL to its complete specification by writing code for
primitive assembly and vertex processing including coordinate
transformations, texture coordinate generation, and clipping

Display List

Evaluator

Per-Vertex
Operations

Primitive
Assembly

Per-Fragment
OperationsRasterization

Pixel
Operations

Frame
Buffer

Texture
Memory

Software Interfaces for Texture Mapping 41

4

• Providing two forms of software rasterization for OpenGL for features
which are not rasterized in the Creator Graphics hardware rasterizer: a
rasterizer which utilizes the UltraSPARC VIS Instruction Set for texturing
functions, and a generic software rasterizer for all features not handled by
the hardware or by VIS.

OpenGL 3-D Texture Mapping Extension

An extension to OpenGL now exists for performing 3-D texture mapping. Both
in-memory formats for 3-D images and pixel storage modes are provided.

Solaris OpenGL 1.1 supports and accelerates the OpenGL 3-D texture mapping
extension.

For more information on OpenGL, refer to The Design of the OpenGL Interface
written by Mark Segal and Kurt Akeley. For the complete OpenGL specification
see The OpenGL Graphics System: A Specification written by the same authors.

Texture Mapping with the XGL™ Graphics Library
XGL is a software library of 2-D and 3-D graphics primitive functions designed
to support a wide variety of graphics-based applications. The XGL library
provides immediate mode, non display-list functionality.

The XGL library implicitly uses hardware graphics acceleration whenever
possible, and most of its functionality is independent of the underlying
hardware. Hardware graphics acceleration occurs automatically without
explicitly requesting it from within an XGL program. In cases such as
hardware double buffering, the functionality is device dependent, and the XGL
library does not simulate the functionality in software.

The XGL library is designed to insulate the application programmer from the
specifics of the window system and the underlying hardware device with XGL
objects, which describe virtual components of the graphics rendering system.
XGL objects simplify the work of the application programmer by presenting a
consistent, device-independent graphics model. For example, display devices,
such as X11 windows, are known to the XGL programmer as Window Raster
Device objects. Graphics state information describing how XGL graphics
primitives are drawn on the device is stored in XGL 2-D Context or 3-D
Context objects.

42 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

4

2-D Texture Mapping with the XGL Graphics Library
In XGL, the 2-D texture to be draped on the geometric primitive can be stored
as an array of colors that will eventually be mapped onto the polygonal
surface. The surface to be textured is specified with vertex coordinates and
texture coordinates (u,v), the latter being used to map the color array on the
polygon’s surface. The u and v are interpolated across the span and then used
as indices into the texture map to obtain the texture color. This color is
combined with the primitive color (obtained by interpolating vertex colors
across spans) or the colors specified by the application to obtain a final color
value at the pixel location.

Texturing is achieved in XGL through a set of flexible attributes. XGL also
allows the result of the texturing operation to be applied to different stages of
the rendering pipeline (see Figure 4-2), and supports sampling methods such
as point, bilinear, and trilinear to obtain texture value and color composition
(e.g., blend, decal, and modulate). Finally, XGL additionally has the capability
of applying multiple textures to individual primitives.

Figure 4-2 XGL rendering pipeline

Object (Intrinsic) Color

Reflected Color

Final Color

Pixel Color

Original primitive color

Primitive color after lighting on a
per vertex basis

Primitive color after depth-cueing
on a per vertex basis

Interpolation of vertex color
to obtain pixel color

Mapping of primitive color
per pixel to device color

Texture Mapping

Lighting

Depth Cueing

Pixel Mapping

Software Interfaces for Texture Mapping 43

4

Texture Mapping with PEXlib
PEXlib is available through Sun as an unbundled product, meeting current
industry standards complying with the PEXlib 5.2 specification. PEXlib is
optimized for Sun platforms to take full advantage of available graphics
processor capabilities including transformations, lighting, and shading,
advanced primitive support, and texture mapping.

PEXlib is an industry standard application program interface designed to
perform 3-D rendering both locally and across X Windows desktops. PEXlib
has significant origins in both PHIGS and PEX.

PEX was developed as an extension to the X Windows X protocol, providing
the ability to communicate 3-D floating point coordinates, and supporting
common PHIGS functionality and methodology.

PEXlib users usually find PEXlib similar to PHIGS, but with slightly richer
functionality, direct mode rendering (vs. display list based), and many other
features. PEXlib is a cross-platform graphics API. It is supported by virtually
every UNIX® workstation vendor, and is part of several major standards
definitions including those from X/Open and the Open Software Foundation.

Like Sun’s XGL Graphics Library, PEXlib supports MIP mapping, texture
compositing, and tiling capabilities. Additional texturing technology such as
environment mapping is also part of PEXlib. Bump mapping is not supported.

The texture mapping functions available with PEXlib include:

• PEXCreateMipmapTM

• PEXCreateMipmapTMFromResources

• PEXFreeTextureMap

Texture mapping utilities built in to PEXlib include:

• PEXFreeMipmap

• PEXGenerateMipMap

• PEXGenerateMipMapFromResources

• PEXOCCTMCoordFillAreaSet

• PEXOCCTMCoordIndexedFillAreaSets

• PEXOCCTMCoordIndexedTriangles

• PEXOCCTMCoordPolyTriangle

44 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

4

• PEXOCCTMCoordQuadrilateralMesh

• PEXOCCTMCoordTriangleFan

• PEXOCCTMCoordTriangles

• PEXOCCTMCoordTriangleStrip

For additional discussion of PEXlib programming, consult the PEXlib
Programming Manual, from O’Reilly and Associates.

3-D Graphics API Texture Mapping Comparison
Table 4-1 provides a functionality comparison among XGL, PEXlib, and
OpenGL. For more information, refer to the documentation specific to the API.

Feature XGL PEXlib OpenGL
Client/Server Protocol Support PEX PEX Proprietary

Color Domain — 1 Dimensional Texture Maps ■ ■ ■

Color Domain — 2 Dimensional Texture Maps ■ ■ ■

Coordinate Source — t0 (1 Dimension) ■ ■ ■

Coordinate Source — t1 (2 Dimension) ■ ■ ■

Coordinate Source — t2 (3 Dimension) ■ ■ ■

Coordinate Source — t3 (4 Dimension) ■ ■

Coordinate Source — Variable Dimensions ■

Capture MIP maps from User Data ■ ■ ■

Capture MIP maps from X Windows ■ ■ ■

Default Texture Map (checkerboard)

Front/Backfaces ■ ■

Minification Filters - Single Base ■ ■ ■

Minification Filters - Linear Base ■ ■ ■

Minification Filters - Single Base in MIP Map ■ ■ ■

Minification Filters - Linear Base in MIP Map ■ ■ ■

Minification Filters - Single Base between MIP Map ■ ■ ■

Minification Filters - Linear Base between MIP Map ■ ■ ■

Magnification Filters - Single Base ■ ■ ■

Magnification Filters - Single Base ■ ■ ■

Transformation Matrix Orientation
(Lookup Table Equivalence)

■ ■ ■

Hints for Texture Dimensions (Acceleration) ■ ■

Hints for Maximum Number of Active Textures ■ ■

Paramterization Method - Explicit ■ ■ ■

Paramterization Method - Linear, World Coordinates ■ ■ ■

Software Interfaces for Texture Mapping 45

4

Table 4-1 Texture mapping support feature comparison

Paramterization Method - Linear, Virtual Coordinates ■ ■ ■

Paramterization Method - Reflect Sphere,
Virtual Coordinates

■ ■ ■

Paramterization Method - Reflect Sphere,
World Coordinates

■ ■ ■

Pespective Correction - None ■

Perspective Correction - Pixel ■ ■ ■

Texture Maps -2n Size Required ■ ■ ■

Texture Maps - Pre-Lighting Rendering Order ■ ■ ■

Texture Maps - Post-Lighting Rendering Order ■ ■

Optimization Hints Available ■ ■

Square Texture Map Required No No No

Surface Primitives - Fill ■ ■ ■

Surface Primitives - Fill of Set of Areas ■ ■

Surface Primitives - Triangle Strip ■ ■ ■

Surface Primitives - Quadrilateral Mesh ■ ■ ■

Compositing - Replace ■

Compositing - Modulate ■ ■ ■

Compositing - Decal ■ ■ ■

Texture Pixel (Texel) Type Support - RGB ■ ■ ■

Texture Pixel (Texel) Type Support - RGBA ■ ■ ■

Texture Pixel (Texel) Type Support - Luminance ■ ■ ■

Texture Pixel (Texel) Type Support - Luminance Alpha ■ ■ ■

Texture Pixel (Texel) Type Support - Intensity ■

Texture Pixel (Texel) Type Support - Alpha ■

Boundary Conditions - Clamp Color, Absolute Source ■ ■ ■

Boundary Conditions - Clamp Color, Explicit Source ■ ■ ■

Boundary Conditions - Boundary ■

Boundary Conditions - Boundary with Wrap ■ ■ ■

Boundary Conditions - Boundary with Mirroring ■ ■ ■

Boundary Conditions - Boundary with Border Color ■ ■ ■

Feature XGL PEXlib OpenGL

46 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

4

47

Summary 5

In recent years, advanced graphics technologies such as texture mapping have
moved from specialized niche applications to general purpose usage in broad
consumer-oriented markets. Entertainment, animation, simulation, and even
graphic arts have benefited from the low cost of texture-capable desktop
systems. Together with advances in texture mapping algorithms and low-cost
3-D graphic subsystems and intelligent, highly integrated, memory controller
devices, the sophistication and general purpose application of texturing
technology is enabling increased rendering realism across virtually all
segments of graphics use.

Sun Microsystems™ is the largest provider of graphics systems for virtually
every market segment. Long heralded as a leader in platform and graphics
device integration, Sun and its third parties provide the industry’s broadest
family of solutions. Regardless of what level of performance or cost a customer
requires, these solutions enable the effective use of texture mapping
technology, freeing the user to focus on results rather than on the intricacies of
the application.

Particularly exciting is the use of texture mapping in extremely price-sensitive
environments where the cost per seat is paramount. Sun’s highly integrated
low-cost Ultra workstations with Creator3D graphics systems enable users to
apply texturing to their data with a minimal impact on their budget.

Sun Microsystems’ open systems philosophy and wide support for third party
products and industry standards such as OpenGL and PEXlib further broaden
the choices for end-users, thus enabling them to implement cross-platform
capable applications without compromising portability or performance.

48 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

5

49

References A

OpenGL Programming Guide, Second Edition, Addison Wesley Developer’s Press.

Solaris XGL Reference Manual, SunSoft Inc.
Solaris XGL Programmer’s Manual, SunSoft Inc.

SunPHIGS Reference Manual, Sun Microsystems Computer Company.
SunPHIGS Extensions Reference Manual, Sun Microsystems Computer Company.
SunPHIGS Porting Guide, Sun Microsystems Computer Company.

OpenWindows User’s Guide, SunSoft Inc.
OpenWindows Programmers Guide, SunSoft Inc.

X Window System User’s Guide, O’Reilly & Associates. Inc.
Xlib Reference Manual, O’Reilly & Associates. Inc.
Xlib Programming Manual, O’Reilly & Associates. Inc.

X Protocol Reference Manual, O’Reilly & Associates. Inc
PEX Protocol Specification Version 5.0P, X Consortium.

PEXlib Specification and C Language Binding, Hewlett-Packard Company,
Version 5.2, In Deevlopment,

PEXlib Programming Manual, O’Reilly & Associates. Inc., 1992.

An Introduction to Computer Graphics Concepts, Addison-Wesley, 1991.

The Renderman Companion, Steve Upstill, Addison-Wesley, 1990.

Survey of Texture Mapping, P. Heckbert, IEEE Computer Graphics and
Applications, Vol. 6, No. 11, 1986.

50 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

Image Synthesis, Theory and Practice, D. Thalman and N. Magnenat Thalman,
Springer-Verlag, 1987.

51

Glossary B

Abstract Coordinate Space (AC)
An abstract coordinate space in which the geometrical object is defined. Every
geometrical object (or portion of the object) can be described in this space,
together with descriptors of all information which describes the object’s color.

CLS
Color space. A colorspace may be RGB, HIV, CMYK, or RGBA. Individuals
elements of a color space are known as colors.

Composition
A function of one or more variables applied to the texture map.

Device Coordinate Space (DC)
Device coordinate space refers to the two-dimensional coordinates of the
computer display device. Device coordinates for computer graphics displays
are typically represented by a set of 2-D coordinate pairs corresponding to the
integer pixel values of the display.

Geometrical Object
A two or three-dimensional shape, constructed from discrete coordinates. In a
broader context, a geometrical object can also be a pixel, span, scanline,
primitive, image, or object.

Interpolation
A way of calculating a value that falls between other, known values. In image
processing, interpolation frequently plays a part in geometric operations such
as rotation. After that type of spatial transformation, pixel locations in the

52 Advanced Graphics on Sun: An Introduction to Texture Mapping — July 1997

B

output image will correspond to non-integer coordinates in the input image.
Therefore, the pixel values in the output must be calculated by looking at the
values of the pixels surrounding the point of interest in the input.

Lookup Table
Lookup tables are used for general image modification. Each entry in a lookup
table contains an index—a value that may appear in the source image—and a
value or set of values to be written to the destination image. For each pixel in
the source, a table-lookup function finds the pixel’s value on the index side of
the table and then writes the output value or values for that entry to the
corresponding pixel in the destination.

MIP Map
A technique which improves the visual quality of a texture map through
precomputation (filtering) of texture map pixel values. This approach delivers
significant performance and quality value for textures that are applied
repeatedly within an individual scene. MIP maps are based upon pre-
computed area sampling designed to reduce the computation and storage
required to approximate an average color for a large number of pixels.

Model Coordinate Space (MC)
The coordinate space in which the coordinates of an object or related objects
are represented. Objects in model coordinates must be transformed to world
and device coordinates prior to rendering on a computer graphics display.

Nearest Neighbor Interpolation
This method takes the value it is looking for to be the value of the pixel closest
to the point of interest. This type of interpolation is the fastest type, but can
introduce artifacts in the output image; for example, smooth lines in the input
image may show up as jagged lines in the output. Nearest neighbor
interpolation is sometimes called zero-order interpolation.

Parameterization
For each transformation of a texture map, a parameterization may be applied
between the input coordinates and the output coordinates.

Texture Coordinate Space (TC)
Simplistically, texture coordinate space refers to the coordinate space of a
texture map, and typically consists of 2-D coordinates u,v.

Glossary 53

B

Texture Map Filtering
An algorithm that transforms the texture map to add or eliminate effects. Such
effects may include blurring, aliasing and antialiasing, rippling, ringing,
MIP mapping, resampling, etc.

World Coordinate Space (WC)
The overall coordinate space in which all elements of a scene, including objects
and light sources are represented prior to transformation to device coordinates.

Printed in USA

Sun Microsystems Computer Company
A Sun Microsystems, Inc. Business
901 San Antonio Road
Palo Alto, CA 94303 USA
415 960-1300
FAX 415 969-9131
http://www.sun.com

Sales Offices
Argentina: +54-1-311-0700
Australia: +61-2-9844-5000
Austria: +43-1-60563-0
Belgium: +32-2-716-7911
Brazil: +55-11-524-8988
Canada: +905-477-6745
Chile: +56-2-638-6364
Colombia: +571-622-1717
Commonwealth of Independent States:
 +7-095-956-5470
Czech/Slovak Republics:
 +42-2-205-102-33
Denmark: +45-44-89-49-89
Estonia: +372-6-308-900
Finland: +358-0-525-561
France: +33-01-30-67-50-00
Germany: +49-89-46008-0
Greece: +30-1-680-6676
Hong Kong: +852-2802-4188
Hungary: +36-1-202-4415
Iceland: +354-563-3010
India: +91-80-559-9595
Ireland: +353-1-8055-666
Israel: +972-9-956-9250
Italy: +39-39-60551
Japan: +81-3-5717-5000
Korea: +822-3469-0114
Latin America/Caribbean:
 +1-415-688-9464
Latvia: +371-755-11-33
Lithuania: +370-729-8468
Luxembourg: +352-491-1331
Malaysia: +603-264-9988
Mexico: +52-5-258-6100
Netherlands: +31-33-450-1234
New Zealand: +64-4-499-2344
Norway: +47-2218-5800
People's Republic of China:
 Beijing: +86-10-6849-2828
 Chengdu: +86-28-678-0121
 Guangzhou: +86-20-8777-9913
 Shanghai: +86-21-6247-4068
Poland: +48-22-658-4535
Portugal: +351-1-412-7710
Singapore: +65-224-3388
South Africa: +2711-805-4305
Spain: +34-1-596-9900
Sweden: +46-8-623-90-00
Switzerland: +41-1-825-7111
Taiwan: +886-2-514-0567
Thailand: +662-636-1555
Turkey: +90-212-236-3300
United Arab Emirates:
 +971-4-366-333
United Kingdom: +44-1-276-20444
United States: +1-800-821-4643
Venezuela: +58-2-286-1044
Worldwide Headquarters:
 +1-415-960-1300

